Loading


What is internet of things (IOT)?. The Complete Internet of things (IoT) Developer Course 2023 [Videos].

In this Video, I am going to discuss the What is internet of things (IOT) in Internet of things (IoT) with examples. The internet of things, or IoT, is a system of interrelated computing devices, mechanical and digital machines, objects, animals or people that are provided with unique identifiers (UIDs) and the ability to transfer data over a network without requiring human-to-human or human-to-computer interaction.


A thing in the internet of things can be a person with a heart monitor implant, a farm animal with a biochip transponder, an automobile that has built-in sensors to alert the driver when tire pressure is low or any other natural or man-made object that can be assigned an Internet Protocol (IP) address and is able to transfer data over a network.

As part of this Video, we are going to discuss the following Topic.

  1. 1. HOW DOES IOT WORK?
  2. 2. WHY IS IOT IMPORTANT?
  3. 3. WHAT ARE THE BENEFITS OF IOT TO ORGANIZATIONS?
  4. 4. PROS AND CONS OF IOT
  5. 5. IOT STANDARDS AND FRAMEWORKS
  6. 6. CONSUMER AND ENTERPRISE IOT APPLICATIONS

 

Note: We are going to work with the same example that we started in Video. So please watch that Video before proceeding to this Video.

Increasingly, organizations in a variety of industries are using IOT to operate more efficeintly, better understand customers to deliver enhanced customer service, improve decision-making and increase the value of the business.

HOW DOES IOT WORK?

An IoT ecosystem consists of web-enabled smart devices that use embedded systems, such as processors, sensors and communication hardware, to collect, send and act on data they acquire from their environments.IOT devices share the sensor data they collect by connecting to an IOT gateway or other edge device where data is either sent to the cloud to be analyzed or analyzed locally. Sometimes, these devices communicate with other related devices and act on the information they get from one another. The devices do most of the work without human intervention, although people can interact with the devices -- for instance, to set them up, give them instructions or access the data.

THE CONNECTIVITY, NETWORKING AND COMMUNICATION PROTOCOLS USED WITH THESE WEB-ENABLED DEVICES LARGELY DEPEND ON THE SPECIFIC IOT APPLICATIONS DEPLOYED.


IoT can also make use of artificial intelligence (AI) and machine learning to aid in making data collecting processes easier and more dynamic.


WHY IS IOT IMPORTANT?

The internet of things helps people live and work smarter, as well as gain complete control over their lives. In addition to offering smart devices to automate homes, IoT is essential to business. IoT provides businesses with a real-time look into how their systems really work, delivering insights into everything from the performance of machines to supply chain and logistics operations.


IoT enables companies to automate processes and reduce labor costs. It also cuts down on waste and improves service delivery, making it less expensive to manufacture and deliver goods, as well as offering transparency into customer transactions.

As such, IoT is one of the most important technologies of everyday life, and it will continue to pick up steam as more businesses realize the potential of connected devices to keep them competitive.

WHAT ARE THE BENEFITS OF IOT TO ORGANIZATIONS?

The internet of things offers several benefits to organizations. Some benefits are industry-specific, and some are applicable across multiple industries. Some of the common benefits of IoT enable businesses to:

  • monitor their overall business processes;
  • improve the customer experience (CX);
  • save time and money;
  • enhance employee productivity;
  • integrate and adapt business models;
  • make better business decisions; and
  • generate more revenue.

IoT encourages companies to rethink the ways they approach their businesses and gives them the tools to improve their business strategies.

Generally, IoT is most abundant in manufacturing, transportation and utility organizations, making use of sensors and other IoT devices; however, it has also found use cases for organizations within the agriculture, infrastructure and home automation industries, leading some organizations toward digital transformation.

IoT can benefit farmers in agriculture by making their job easier. Sensors can collect data on rainfall, humidity, temperature and soil content, as well as other factors, that would help automate farming techniques.

The ability to monitor operations surrounding infrastructure is also a factor that IoT can help with. Sensors, for example, could be used to monitor events or changes within structural buildings, bridges and other infrastructure. This brings benefits with it, such as cost saving, saved time, quality-of-life workflow changes and paperless workflow.

A home automation business can utilize IoT to monitor and manipulate mechanical and electrical systems in a building. On a broader scale, smart cities can help citizens reduce waste and energy consumption.

IoT touches every industry,including businesses within healthcare, finance, retail and manufacturing.


PROS AND CONS OF IOT

Some of the advantages of IoT include the following:


  • ability to access information from anywhere at any time on any device;
  • improved communication between connected electronic devices;
  • transferring data packets over a connected network saving time and money; and
  • automating tasks helping to improve the quality of a businesss services and reducing the need for human intervention.

Some disadvantages of IoT include the following:


  • As the number of connected devices increases and more information is shared between devices, the potential that a hacker could steal confidential information also increases.
  • Enterprises may eventually have to deal with massive numbers -- maybe even millions -- of IoT devices, and collecting and managing the data from all those devices will be challenging.
  • If theres a bug in the system, its likely that every connected device will become corrupted.
  • Since theres no international standard of compatibility for IoT, its difficult for devices from different manufacturers to communicate with each other.

IOT STANDARDS AND FRAMEWORKS

There are several emerging IoT standards, including the following:


  • IPV6 over Low-Power Wireless Personal Area Networks (6LoWPAN) is an open standard defined by the Internet Engineering Task Force (IETF). The 6LoWPAN standard enables any low-power radio to communicate to the internet, including 804.15.4, Bluetooth Low Energy (BLE) and Z-Wave (for home automation).
  • ZigBee is a low-power, low-data rate wireless network used mainly in industrial settings. ZigBee is based on the Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 standard. The ZigBee Alliance created Dotdot, the universal language for IoT that enables smart objects to work securely on any network and understand each other.
  • LiteOS is a Unix-like operating system (OS) for wireless sensor networks. LiteOS supports smartphones, wearables, intelligent manufacturing applications, smart homes and the internet of vehicles (IoV). The OS also serves as a smart device development platform.
  • OneM2M is a machine-to-machine service layer that can be embedded in software and hardware to connect devices. The global standardization body, OneM2M, was created to develop reusable standards to enable IoT applications across different verticals to communicate.
  • Data Distribution Service (DDS) was developed by the Object Management Group (OMG) and is an IoT standard for real-time, scalable and high-performance M2M communication.
  • Advanced Message Queuing Protocol (AMQP) is an open source published standard for asynchronous messaging by wire. AMQP enables encrypted and interoperable messaging between organizations and applications. The protocol is used in client server messaging and in IoT device management.
  • Constrained Application Protocol (CoAP) is a protocol designed by the IETF that specifies how low-power, compute-constrained devices can operate in the internet of things.
  • Long Range Wide Area Network (LoRaWAN) is a protocol for WANs designed to support huge networks, such as smart cities, with millions of low-power devices.

IoT frameworks include the following:


  • Amazon Web Services IOT is a cloud computing platform for IoT released by Amazon. This framework is designed to enable smart devices to easily connect and securely interact with the AWS cloud and other connected devices.
  • Arm Mbed IoT is a platform to develop apps for IoT based on Arm microcontrollers. The goal of the Arm Mbed IoT platform is to provide a scalable, connected and secure environment for IoT devices by integrating Mbed tools and services.
  • Microsofts Azure IoT Suite is a platform that consists of a set of services that enables users to interact with and receive data from their IoT devices, as well as perform various operations over data, such as multidimensional analysis, transformation and aggregation, and visualize those operations in a way thats suitable for business.
  • Googles Brillo/Weave is a platform for the rapid implementation of IoT applications. The platform consists of two main backbones: Brillo, an Android-based OS for the development of embedded low-power devices, and Weave, an IoT-oriented communication protocol that serves as the communication language between the device and the cloud.
  • Calvin is an open source IoT platform released by Ericsson designed for building and managing distributed applications that enable devices to talk to each other. Calvin includes a development framework for application developers, as well as a runtime environment for handling the running application.
  • CONSUMER AND ENTERPRISE IOT APPLICATIONS

    There are numerous real-world applications of the internet of things, ranging from consumer IoT and enterprise IoT to manufacturing and industrial IoT (IIOT). IoT applications span numerous verticals, including automotive, telecom and energy.


    In the consumer segment, for example, smart homes that are equipped with smart thermostats, smart appliances and connected heating, lighting and electronic devices can be controlled remotely via computers and smartphones.

    Wearable devices with sensors and software can collect and analyze user data, sending messages to other technologies about the users with the aim of making users lives easier and more comfortable. Wearable devices are also used for public safety -- for example, improving first responders  response times during emergencies by providing optimized routes to a location or by tracking construction workers or firefighters vital signs at life-threatening sites.

    In healthcare, IoT offers many benefits, including the ability to monitor patients more closely using an analysis of the data thats generated. Hospitals often use IoT systems to complete tasks such as inventory management for both pharmaceuticals and medical instruments.

    Smart buildings can, for instance, reduce energy costs using sensors that detect how many occupants are in a room. The temperature can adjust automatically -- for example, turning the air conditioner on if sensors detect a conference room is full or turning the heat down if everyone in the office has gone home.

    In agriculture, IoT-based smart farming systems can help monitor, for instance, light, temperature, humidity and soil moisture of crop fields using connected sensors. IoT is also instrumental in automating irrigation systems.

    In a smart city, IoT sensors and deployments, such as smart streetlights and smart meters, can help alleviate traffic, conserve energy, monitor and address environmental concerns, and improve sanitation.


    In the next Video, I will discuss How to implement IOT in businesses. Here, in this Video, I try to explain What is internet of things (IOT)  with an example. I hope this Video will help you with your need. I would like to have your feedback. Please post your feedback, question, or comments about this Video.



See All

Comments (211 Comments)

Submit Your Comment

See All Posts

Related Posts

Internet of things (IoT) / Youtube

What is internet of things (IOT)?

In this Video, I am going to discuss the What is internet of things (IOT) in Internet of things (IoT) with examples. The internet of things, or IoT, is a system of interrelated computing devices, mechanical and digital machines, objects, animals or people that are provided with unique identifiers (UIDs) and the ability to transfer data over a network without requiring human-to-human or human-to-computer interaction.
25-jan-2022 /24 /211

Internet of things (IoT) / Blog

How to implement IOT in businesses?

FEATURE Ultimate IoT implementation guide for businesses IoT can offer many benefits to the enterprise, but it can be a challenge to implement. Learn the requirements and use best practices for a successful deployment.
26-jan-2022 /24 /211

Internet of things (IoT) / Blog

What are the risks and challenges of implementation in IOT?

Although the risks are generally well understood, the sheer volume and diversity of IoT devices requires a greater level of attention and control than a business might otherwise exercise.
26-jan-2022 /24 /211