

May/June 2012. P31/32

5 The table shows the assembly language instructions for a processor which has one general purpose register – the Accumulator.

Instruction			
Op Code	Operand	Explanation	
LDD	<address></address>	Load using direct addressing	
STO	<address></address>	Store the contents of the Accumulator at the given address	
LDI	<address></address>	Load using indirect addressing	
LDX	<address></address>	Load using indexed addressing	
INC		Add 1 to the contents of the Accumulator	
END		End the program and return to the operating system	

500	LDD	507	
501	INC		
502	STO	509	
503	LDD	508	
504	INC		
505	STO	510	
506	END		
507	22		
508	170		
509	0		
510	0		

		Memory	Address 509	
Accumulator	507	508	509	510
	22	170	0	0

May/June 2012. P33

6 The table shows the assembly language instructions for a processor which has one general purpose register – the Accumulator.

Instruction			
Op Code	Operand	Explanation	
LDD	<address></address>	Load using direct addressing	
STO	<address></address>	Store the contents of the Accumulator at the given address	
LDI	<address></address>	Load using indirect addressing	
LDX	<address></address>	Load using indexed addressing	
INC		Add 1 to the contents of the Accumulator	
END		End the program and return to the operating system	

(c) Trace this assembly language program using the given trace table. The first instruction of the program is loaded into main memory at address 200.

200	LDD	208	
201	INC		
202	STO	208	
203	LDD	207	
204	INC		
205	STO	207	
206	END		
207	16		
208	150		

	Memory Address		
Accumulator	207	208	
	16	150	

[4]

May/June 2013. P31/32

3 The table shows the assembly language instructions for a processor which has one general purpose register – the Accumulator (ACC), and an index register (IX).

Instruction		Evaluation		
Op Code	Operand	- Explanation		
LDD	<address></address>	Direct addressing. Load the contents of the given address to ACC		
STO	<address></address>	Store the contents of ACC at the given address		
LDI	<address></address>	Indirect addressing. At the given address is the address to be used. Load the contents of this second address to ACC		
LDX	<address></address>	Indexed addressing. Form the address as <address> + the contents of IX. Copy the contents of this address to ACC</address>		
INC	<register></register>	Add 1 to the contents of the register (ACC or IX)		
ADD	<address></address>	Add the contents of the given address to the contents of ACC		
OUT		Output the contents of ACC (as a denary number) to the monitor		
IN		Input a denary number from the keyboard and store in ACC		
END		End the program and return to the operating system		

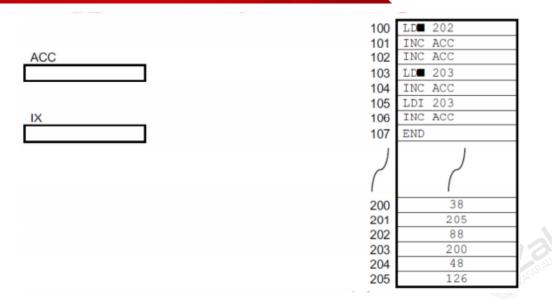
The diagram shows a program loaded in main memory starting at location 100.

Two of the op-codes have been partially blanked out.

Locations 200 onwards contain data which is used by the program.

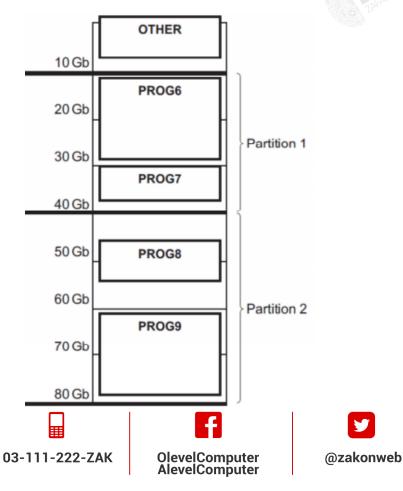
(c) The instruction at address 105 is fetched and executed.

Draw on the diagram to explain how this instruction is executed and show the contents of ACC after execution.



Topical Past Papers

Topic: 1.4.4 Assembly Language



[2]

May/June 2013. P31/32

6 A multiprogramming, multi-user operating system organises the available memory into two fixed sized partitions.

- Partition 1 size 30 Gb is used only for batch processing
- Partition 2 size 40 Gb is used only for interactive processing at a terminal

[1]

[1]

Topic: 1.4.4 Assembly Language

(i) If PROG6 completes execution, which programs (if any) can be loaded next?

(ii) If PROG8 completes execution, which programs (if any) can be loaded next?

Oct/Nov 2013. P31

3 (c) The diagram shows a program loaded into main memory starting at memory address 7A Hex.

Address Hex.) 7A 2150 7B A351 7C A552 7D FFFF 90 003C

(i) How many bits are used for each main memory location?

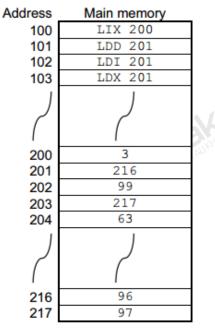
[1]

The trace table below is used to show how the contents of the special-purpose registers change as the program is executed. The steps in the fetch stage of the fetch-execute cycle are shown in the first column using register transfer notation. (For example, MAR \leftarrow [PC] means the content of the Program Counter is copied to the Memory Address Register.)

(ii) Complete the trace table for the fetching of the **first program instruction (2150)**:

- Show the changing contents of the registers
- Put a tick in the Address bus/Data bus column to show when the signals on that bus change.

13	Fetch stage	Special purpose registers (Contents shown in Hex.)				Buses	
LASP		PC	MAR	MDR	CIR	Address bus	Data bus
		7A					
	MAR ← [PC]						
	PC ← [PC] + 1						
	MDR ← [[MAR]]						
	CIR ← [MDR]						



(d) The following table shows some of a processor's instruction set in assembly language.

Instruction		Exploration	
Op Code	Operand	Explanation	
LDD	<address></address>	Direct addressing. Load the contents of the given address to ACC	
LDI	<address></address>	Indirect addressing. At the given address is the address to be used. Load the contents of this second address to ACC	
LIX	<address></address>	Load the contents of the address to the Index register (IX)	
LDX	<address></address>	Indexed addressing. Form the address as <address> + the contents of IX. Copy the contents of this address to ACC</address>	

The following program is to be executed. Shown are:

- the first four instructions only of this program
- the memory locations which are accessed by this program.

Complete the trace table below for the first four program instructions. Show each change in the contents of the

	Register			
Instruction	Accumulator (ACC)	Index Register (IX)		
LIX 200				
LDD 201				
LDI 201				
LDX 201				

Oct/Nov 2013. P32

registers.

3 (c) The diagram shows a program loaded into main memory starting at memory address 30 Hex.

ddress	Main memory (contents shown in Hex.)
30	2150
31	A351
32	A552
33	FFFF
لم	لم
58	003C
59	103C
5A	010B

(i) How many bytes are used to store each program instruction?

A

(ii) Describe the steps in the fetch stage of the fetch-execute cycle. Refer to the instruction at address 30 to illustrate your answer.

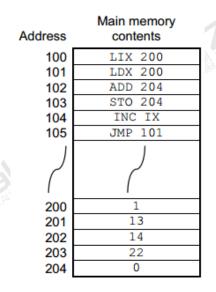
[1]

zak@zakonweb.com

Page **7** of **16**

www.zakonweb.com

[4]



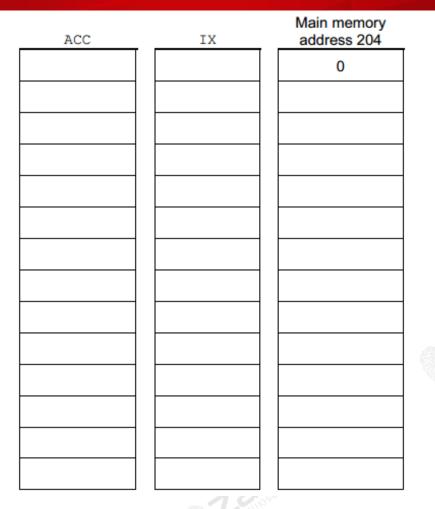
(d) The following table shows some of a processor's instruction set in assembly lan	guage.
---	--------

Instr	ruction	Explanation
Op Code	Operand	Explanation
LIX	<address></address>	Load the contents of the address to the Index register (IX)
LDX	<address></address>	Indexed addressing. Form the address as <address> + the contents of IX. Copy the contents of this address to ACC</address>
STO	<address></address>	Store the contents of ACC at the given address
ADD	<address></address>	Add the contents of the given address to the ACC
INC	<register></register>	Add 1 to the contents of the register (ACC or IX)
JMP	<address></address>	Jump to the given address

The following program is to be executed. Shown are:

- the first six instructions of this program
- the memory locations which will be accessed by this program.

Complete the trace table below for **three** iterations of the loop. Show each change to the contents of the registers and memory location 204.


zak@zakonweb.com

Computer Science 9608

Topical Past Papers

Topic: 1.4.4 Assembly Language

[4]

Oct/Nov 2013. P33

(c) The diagram shows a program loaded into main memory starting at memory address 40 Hex.

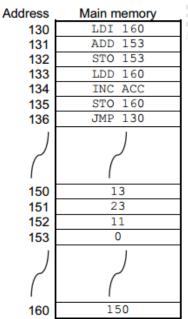
Address	Main memory (Contents shown in Hex.)
40	7324
41	A351
42	A552
43	FFFF
لم	لم
68	003C
69	103C
6A	010B

zak@zakonweb.com

[1]

Topic: 1.4.4 Assembly Language

(i) How many bytes are used to store each program instruction?


(ii) Describe the steps in the fetch stage of the fetch-execute cycle. Use the instruction at address 40 to illustrate your answer. [5]

(d) The following table shows some of a processor's instruction set in assembly language.

Inst	ruction	Evaluation	
Op Code	Operand	Explanation	
LDD	<address></address>	Direct addressing. Load the contents of the given address to ACC	
LDI	<address></address>	Indirect addressing. At the given address is the address to be used. Load the contents of this second address to ACC	
STO	<address></address>	Store the contents of ACC at the given address	
ADD	<address></address>	Add the contents of the given address to the ACC	
INC	<register></register>	Add 1 to the contents of the register (ACC or IX)	
JMP	<address></address>	Jump to the given address	

The following program is to be executed. Shown are:

- the first seven instructions in this program
- the memory locations which will be accessed by this program

www.zakonweb.com

Complete the trace table below for **two** iterations of the loop. Show each change in the contents of the register and memory locations.

Register ACC	Memory	/ location
ACC	153	160
	0	150

[4]

zak@zakonweb.com

www.zakonweb.com

Oct/Nov 2014. P31

Oct/Nov 2014. P33

4 The table below gives a subset of the assembly language instructions for a computer with a single general-purpose register, the Accumulator (ACC), and an index register (IX).

Instr	uction		
Opcode (mnemonic)	Operand	Opcode (binary)	Explanation
LDD	<address></address>	0000 0100	Direct addressing. Load the contents of the given address to ACC
LDV	<number></number>	0000 0101	Load the given number to ACC
STO	<address></address>	0001 0000	Store the contents of ACC at the given address
LDI	<address></address>	0000 0110	Indirect addressing. At the given address is the address to be used. Load the contents of this second address to ACC
LDX	<address></address>	0000 0111	Indexed addressing. Form the address as <address> + the contents of IX. Copy the contents of this address to ACC</address>
INC	<register></register>	0000 0011	Add 1 to the contents of the register (ACC or IX)
OUTCH		1000 0001	Output to the monitor the character corresponding to the ASCII character code in ACC
IN		1001 0000	Input a denary number from the keyboard and store in ACC
JMP	<address></address>	1100 1000	Unconditional jump to the given address
END		1111 1111	End the program and return to the operating system

The diagram shows a program loaded in main memory starting at location 100. Locations 200 onwards contain data which are used by the program.

Computer Science 9608 Topical Past Papers

[3]

Topic: 1.4.4 Assembly Language

(b)

(a) (i) The instruction at address 102 is fetched.

ACC	100	LDI	150
	101	OUTCH	ł
	102	LDD	203
	103	INC	ACC
	104	STO	150
IX	105	JP	100
	106	END	
	107		
)]
Show the contents of the registers after execution.		1	$\boldsymbol{\mathcal{C}}$
	150		200
Write on the diagram to explain.	[2]))
			$\boldsymbol{\mathcal{C}}$
ii) The instruction at address 100 is fetched.	200		65
ACC	201		76
700	202		65
	203		77
	204		32
	205		32
N	They are		
IX UNR			
Show the contents of the registers after execution. We	rite on the diagram to ex	plain.	
The given table of instructions shows the binary numb	er used for each instruct	ion's or	ocode.
All instructions in machine code are stored as a 16-bit			
	pattern, when the optout		
operand as the second 8 bits.			

(ii)	Con	sider	the i	nstru	ction:													
	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0		1	
	Des	cribe	what	this i	instru	iction	does	5.										[2]
(iii)	Prog	grami	mers	prefe	r to v	vrite	mach	ine c	ode ir	nstruc	ctions	in he	exade	cimal	l. Exp	olai	in why.	[1]
(iv)	Wha	at is t	he he	exade	cimal	num	ber f	or the	e insti	ructio	n sho	wn ir	n part	: (b)(i	i)?			[1]

[2]

Topic: 1.4.4 Assembly Language

(vi)	LDV 15															

(c) Use the ASCII code table to trace the **first four iterations** of the given program.

	ASCII code table (part)						
Character	Decimal	Character	Decimal	Character	Decimal		
<space></space>	32	I.	73	R	82		
А	65	J	74	S	83		
В	66	к	75	т	84		
С	67	L	76	U	85		
D	68	М	77	V	86		
E	69	N	78	w	87		
F	70	0	79	х	88		
G	71	Р	80	Y	89		
н	72	Q	81	Z	90		

	ACC	Location 150	OUTPUT	r
				100
				101
				102 103
				104
				105
				106 107
				150
				200
				201
				202
				204
				205
			I	
			_	
03-1	11-222-ZAK	OlevelComp AlevelComp	uter uter	@zakonweb

100	LDI	150	
101	OUTC	Н	
102	LDD	150	
103	INC	ACC	
104	STO	150	
105	JP	100	
106	END		
107			
150		<u>ر کر</u> 200 کر کر	
200		65	
201		76	
202		65	
203		77	
204		32	
205		32	

zak@zakonweb.com

www.zakonweb.com

Page 14 of 16

Oct/Nov 2014. P32

4 The table below gives a subset of the assembly language instructions for a computer with a single general purpose register, the Accumulator (ACC), and an index register (IX).

Instru	uction		
Opcode (mnemonic)	Operand	Opcode (binary)	Explanation
LDD	<address></address>	0000 0100	Direct addressing. Load the contents of the given address to ACC
LDV	<number></number>	0000 0101	Load the given number to ACC
STO	<address></address>	0001 0000	Store the contents of ACC at the given address
LDI	<address></address>	0000 0110	Indirect addressing. At the given address is the address to be used. Load the contents of this second address to ACC
LDX	<address></address>	0000 0111	Indexed addressing. Form the address as <address> + the contents of IX. Copy the contents of this address to ACC</address>
INC	<register></register>	0000 0011	Add 1 to the contents of the register (ACC or IX)
OUTCH		1000 0001	Output the character corresponding to the ASCII character code in ACC to the monitor
IN		1001 0000	Input a denary number from the keyboard and store in ACC
JMP	<address></address>	1100 1000	Unconditional jump to the given address
CMP	<number></number>	1100 1001	Compare the contents of ACC with the given number
JPE	<address></address>	1110 0111	If the result of the previous compare instruction was a match, jump to the given address

(a) The given table of instructions shows the binary number used for each instruction's opcode. All instructions in machine code are stored as a 16-bit pattern, with the opcode as the first 8 bits and the operand as the second 8 bits.

- (i) What is the maximum number of memory locations which can be directly addressed? [1]
- (ii)

Consider the instruction:												
0	0	0	0	0	1	0	1	1	1	0	0	
Describe what this instruction does.												

- (iii) Programmers prefer to write machine code instructions in hexadecimal. Explain why. [1]
- (iv) What is the hexadecimal number for the machine code instruction shown in part (b)(ii)? [1]
- (v) Show the 16-bit machine code for the following instruction: JPE 204

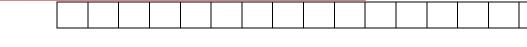
[2]

zak@zakonweb.com

0

0

0


1

www.zakonweb.com

[2]

Topic: 1.4.4 Assembly Language

(b) Use the ASCII code table to trace execution of the given program.

ASCII code table (part)							
Character	Decimal	Character	Decimal	Character	Decimal		
<space></space>	32	l I	73	R	82		
Α	65	J	74	S	83		
В	66	к	75	Т	84		
С	67	L	76	U	85		
D	68	М	77	V	86		
E	69	N	78	W	87		
F	70	0	79	Х	88		
G	71	Р	80	Y	89		
н	72	Q	81	Z	90		

ACC	Location 450	OUTPUT

300	LDI	450
301	CMP	32
302	JPE	308
303	OUTCH	
304	LDD	450
305	INC	ACC
306	STO	450
307	JMP	300
308	END	
450	7	ر ر ⁵⁰⁰ ر ر
500 501 502 503 504		65 74 65 90 32

